Cross-domain Semantic Parsing via Paraphrasing
نویسندگان
چکیده
Existing studies on semantic parsing mainly focus on the in-domain setting. We formulate cross-domain semantic parsing as a domain adaptation problem: train a semantic parser on some source domains and then adapt it to the target domain. Due to the diversity of logical forms in different domains, this problem presents unique and intriguing challenges. By converting logical forms into canonical utterances in natural language, we reduce semantic parsing to paraphrasing, and develop an attentive sequence-to-sequence paraphrase model that is general and flexible to adapt to different domains. We discover two problems, small micro variance and large macro variance, of pretrained word embeddings that hinder their direct use in neural networks, and propose standardization techniques as a remedy. On the popular OVERNIGHT dataset, which contains eight domains, we show that both cross-domain training and standardized pre-trained word embedding can bring significant improvement.
منابع مشابه
Semantic Parsing of Ambiguous Input through Paraphrasing and Verification
We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we constr...
متن کاملSemantics-Driven Statistical Machine Translation
Semantic parsing, the task of mapping natural language sentences to logical forms, has recently played an important role in building natural language interfaces and question answering systems. In this talk, I will present three ways in which semantic parsing relates to machine translation: First, semantic parsing can be viewed *as* a translation task with many of the familiar issues, e.g., dive...
متن کاملCross-lingual Learning of an Open-domain Semantic Parser
We propose a method for learning semantic CCG parsers by projecting annotations via a parallel corpus. The method opens an avenue towards cheaply creating multilingual semantic parsers mapping open-domain text to formal meaning representations. A first cross-lingually learned Dutch (from English) semantic parser obtains f-scores ranging from 42.99% to 69.22% depending on the level of label info...
متن کاملSemantic Parsing via Paraphrasing
A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on its head. Given an input utterance, we...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کامل